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Using Reddy's higher order shear deformation plate theory, the #ow-induced vibrations
of simply supported shear-deformable laminated plates exposed to an oscillating #ow are
studied. The plate is assumed to be placed normal to the #ow. The #uid}structure
interaction is based on Morison's model, which leads to a non-linear motion equation. The
state variable approach is used in conjunction with the Spline collocation method to
determine the dynamic response of the plate. Numerical illustrations concern the dynamic
response of antisymmetric angle-ply and symmetric cross-ply laminated plates under
oscillating #ow. The roles played by plate aspect ratio, total number of plies, "ber
orientation, as well as transverse shear deformation are studied. In all cases, non-linear
e!ects lead to rather complex vibrations and to essentially chaotic motion.
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1. INTRODUCTION

Vibration of plate structures induced by oscillating #ow occurs widely in practical
engineering, for example, vibration of o!shore platform structures induced by ocean waves.
Flow over blu! bodies causes the development of separating #ow and the vortex shedding
behind the plate may be observed. The vortex patterns are somewhat di!erent from the
ordinary KaH rmaH n vortex street observed behind a symmetric blu! body in a uniform #ow.
Some numerical and experimental studies [1}5] on the prediction of #uid forces acting on
and #ow patterns behind inclined and normal plates in oscillating #ow have already been
reported. The laminated plate may vibrate in the transverse direction under the in-line #uid
force, on placing the plate normal to the oscillating #ow.

In spite of the practical importance of the problem, there is a need to have a better
understanding of composite shear-deformable laminated plates exposed to an oscillating
#ow.

Many free vibration studies for composite laminated plates are available in the literature,
see, e.g., references [6}16]. Numerous studies involving the application of the shear
deformation plate theory to transient dynamic response of composite laminated plates can
be found in references [17}20]. However, there is no literature dealing with the dynamic
response of shear-deformable laminated plates exposed to an oscillating #ow. This is the
problem studied in the present paper for the case when all four edges of the plate are
assumed to be simply supported with no in-plane displacement.

In the present study, the formulations are based on Reddy's higher order shear
deformation plate theory [21]. The plate is assumed to be placed normal to the #ow. The
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#uid}structure interaction is based on Morison's model [22], which leads to a non-linear
motion equation. The state variable approach (SVA) [18, 19] is used in conjunction with the
Spline collocation method to determine the dynamic response of the plate. Numerical
illustrations concern the dynamic responses of antisymmetric angle-ply and symmetric
cross-ply laminated plates exposed to an oscillating #ow.

2. EQUATIONS OF MOTION

Consider a rectangular plate of length a, width b and thickness h, which consists of
N plies. The plate is subjected to a transverse distributed load, q, caused by oscillating #ow.
As usual, the co-ordinate system has its origin at the corner of the plate. Let u, v, w be the
displacements parallel to the right-hand set of axes (x, y, z), where x is longitudinal and z is
perpendicular to the plate. t

x
and t

y
are the rotations of transverse normals about the y-

and x-axis, respectively, at the mid-plane. Let F(x, y) be the stress function for the stress
resultants, and denote di!erentiation by a comma, so that N

x
"F

,yy,
N

y
"F

,xx
and

N
xy
"!F

,xy
.

Attention is con"ned to the following two cases: (1) antisymmetric angle-ply laminated
plates; and (2) symmetric cross-ply laminated plates, from which solutions for isotropic and
orthotropic plates follow as a limiting case.

The deduction of the governing equations associated with Reddy's higher order shear
deformation plate theory (HSDPT) follows the same pattern in the case of its static
counterpart [23, 24], so that the motion equations of shear-deformable laminated plates
can be written as
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in which a superposed dot indicates di!erentiation with respect to time, and operators ¸
ij
( )

and I
ij

are de"ned in Appendix A.
All four edges are assumed to be simply supported, the boundary conditions are

x"0, a:

u"w"t
y
"0, F
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"0. (5a)

y"0, b:
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where M
x

and M
y
are the bending moments, and P

x
and P

y
are the higher order moments

respectively.
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It is assumed that the plate is placed normal to the oscillating #ow and the velocity of the
#uid is parallel to the z direction.

As it has been shown by Morison [22], the in-line #uid force on the plate may be divided
into two parts, one is drag force caused by unsteady velocity and the other is intertia force
caused by acceleration or deceleration of the #uid. The #uid force per unit area is now
de"ned by
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(6)

where o
0

is the density of #uid, c
I
the coe$cient of added mass, c

D
the drag coe$cient,;Q (t)

the #uid velocity as a function of time, ;QM the mean #uid velocity, and A the circular area
whose diameter equals the width of the plate.

For the oscillating #ow with zero mean, i.e. ;QM "0, equation (6) becomes
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in which c
m

is the inertia coe$cient and c
m
"1#c

I
.

Substituting equation (7) into equation (1) yields
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It is noted that, if c
D

is non-zero valued, equation (8) is a non-linear motion equation.

3. SOLUTIONS PROCEDURE

The dynamic response of a simply supported shear-deformable laminated plate under
oscillating #ow is now determined by using an analytical}numerical procedure. Firstly, the
state variable approach (SVA) is used to solve equations (8), (2), (3) and (4), and we assume
that

w (x, y, t)"
=
+

m,n/1

=
mn

(t) sin ax sinby, (9a)

t
x
(x, y, t)"

=
+

m,n/1

X
mn

(t) cos ax sinby, (9b)

t
y
(x, y, t)"

=
+

m,n/1

>
mn

(t) sin ax cosby, (9c)

where=
mn

(t), X
mn
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(t) are unknown functions.
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Substituting equation (9) into equation (4), the solution of stress function satisfying the
boundary conditions of equation (5) can be obtained as
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where g
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, g

2
and g

3
are coe$cients de"ned in Appendix B.

Substituting equations (9) and (10) into equation (8) yields
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Making use of Galerkin's orthogonality condition, we have

M
11
=G

mn
(t)#M

12
XG

mn
(t)#M

13
>G
mn

(t)#f
1
(t)=R

mn
(t)#a

1
=Q 2

mn
(t)

#K
11
=

mn
(t)#K

12
X

mn
(t)#K

13
>

mn
(t)"f

2
(t)#f

3
(t), (12a)

where f
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1
are de"ned in Appendix C. Note that now equation (12a) is

a non-linear equation.
Similarly, from equations (2) and (3), we have

M
21
=G

mn
(t)#M

22
XG

mn
(t)#K

21
=

mn
(t)#K

22
X

mn
(t)#K

23
>
mn

(t)"0, (12b)

M
31
=G

mn
(t)#M

33
>G

mn
(t)#K

31
=

mn
(t)#K

32
X

mn
(t)#K

33
>
mn

(t)"0. (12c)

The [M
ij
], [K

ij
] given in equation (12) are also de"ned in Appendix C.

Next, equation (12) can be solved by an increment method and can be written as
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NT is the displacement vector. M1 (t), K1 (t) and C1 (t) are mass,

sti!ness and damping matrices, respectively, DP(t) is the load increment vector, and the
details can be found in Appendix D. Let the time increment be very small; then in each time
increase step M1 (t), K1 (t) and C1 (t) can be taken as a constant, and in such a case equation (13)
can be solved by the Spline collocation method numerically. De"ne the displacement vector
as a 3-D B-spline function
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where Z
r
(r"w, x, y) correspond to the displacements=, X, > respectively, X

3
is the third

order B-spline function, t
j
is any Spline node in the time domain, Dt is the time increase.

Substituting equation (14) into equation (13), and letting the residuals to equal zero, one
can obtain
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where
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from equation (15), C"MC
w
, C

x
, C

y
NT can easily be calculated with the initial condition.

Resubstituting C"MC
w
, C

x
, C

y
NT into equation (14), as a result,=

mn
(t), X

mn
(t) and >

mn
(t)

can be obtained.

4. NUMERICAL EXAMPLES AND DISCUSSION

Dynamic and chaotic responses of simply supported shear-deformable laminated plates
exposed to an oscillating #ow in the time domain were investigated. A program was
developed for the purpose and many examples have been solved numerically, including the
following.

4.1. COMPARISON STUDIES

Four numerical examples for free vibration and transient response of simply supported
antisymmetric angle-ply and symmetric cross-ply laminated plates are presented to show
the accuracy and e$ciency of the present method.

Example 1. To validate the present method, the fundamental natural frequency

coe$cients -"(ua2/h)Jo/E
22

of (h/-h/2) antisymmetric angle-ply laminated square
plates are compared in Table 1 with the "nite element method (FEM) results given by Phan
and Reddy [10], using their material properties, i.e., E

11
/E

22
"40,

G
12

/E
22
"G

13
/E

22
"0)6, G

23
/E

22
"0)5 and l

12
"0)25.
TABLE 1

Fudamental frequency coe.cients -"(ua2/h)Jo/E
22

for (h/-h/2) square plates

h"30 h"45

a/h N"2 N"6 N"2 N"6

4 Present 9)5011 10)5818 9)8128 10)899
Phan & Reddy [10] 9)4456 10)577 9)7594 10)895

10 Present 12)927 18)176 13)311 19)029
Phan & Reddy [10] 12)873 18)170 13)263 19)025

20 Present 13)869 21)650 14)264 22)879
Phan & Reddy [10] 13)849 21)648 14)246 22)877

50 Present 14)177 23)068 14)575 24)480
Phan & Reddy [10] 14)174 23)067 14)572 24)480

100 Present 14)223 23)295 14)621 24)739
Phan & Reddy [10] 14)223 23)295 14)621 24)739



TABLE 2

¹he fudamental frequency coe.cients -"(ua2/h)Jo/E
22

for a (0/90)
s
square plate (a/h"5)

with di+erent values of E
11

/E
22

E
11

/E
22

3-D [7] HSDPT [13] HSDPT [10] HSDPT [12] Present

10 8)2103 8)2940 8)2718 8)2718 8)2718
20 9)5603 9)5439 9)5623 9)5623 9)5623
30 10)272 10)284 10)272 10)272 10)272
40 10)752 10)794 10)787 10)787 10)787
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Example 2. We consider now the fundamental natural frequency coe$cients of (0/90)
s

symmetric cross-ply laminated square plates, which are compared in Table 2 with HSDPT
results given by Phan and Reddy [10], Khdeir [12], Khdeir and Librescu [13] and
three-dimensional elasticity solutions of Noor [7]. The material properties are the same as
used in Example 1.

Example 3. We now turn our attention to the transient response of a (0/90/0) cross-ply
laminated square plate with b/h"5 under time-dependent sinusoidal distributed load
de"ned as

q"q
0
F (t) sin

n
a

x sin
n
b

y, F (t)"G
sin(nt/t

1
) 0)t)t

1
,

0 t't
1

(17)

in which t
1
"0)006 s and q

0
"68)9476 MPa. All plies are assumed to have the same

thickness and plate thickness h"0)1524 m. The material properties are:
E
11
"172)369 GPa, E

22
"6)895 GPa, G

12
"G

13
"3)448 GPa, G

23
"1)379 GPa,

l
12
"0)25 and o"1603)03 kg/m3. The variations of the central de#ection as functions of

time are compared in Figure 1 with HSDPT results of Khdeir and Reddy [18].
Example 4. We now compare the variations of the central de#ection as functions of time

for a ($45)
T

antisymmetric angle-ply laminated square plate subjected to a suddenly
applied uniformly distributed load in Figure 2 with the results of Kant et al. [17], using their
computing data: E

11
/E

22
"25, G

12
/E

22
"G

13
/E

22
"G

23
/E

22
"0)5, E

22
"21 GPa,

l
12
"0)25, a"b"0)25 m, h"0)05 m, o"800 kg/m3 and q"0)1 MPa.
The good agreement between the present results and referenced solutions of Tables 1 and 2,

and Figures 1 and 2 reveals the high accuracy of the presented method.

4.2 PARAMETRIC STUDIES

A parametric study of antisymmetric angle-ply and symmetric cross-ply laminated plates
exposed to an oscillating #ow was carried out. Under the present study, we assume that the
#uid velocity has the form ;Q ";Q

m
sinut, the material properties are: E

11
"203)00 GPa,

E
22
"11)20 GPa, G

12
"G

13
"8)40 GPa, G

23
"4)03 GPa, l

12
"0)32 and o"1600 kg/m3.

All plies are assumed to have the same thickness and the total thickness of the plate is
h"0)05 m. The #uid parameters adopted here are o

0
"1000 kg/m3, ;Q

m
"20 m/s,

u"125 rad/s, c
m
"1)61 and c

D
"1)12. However, the analysis is equally applicable to other

types of #uid parameters as well. Zero initial conditions are assumed. Typical results for
central de#ection as functions of time are shown in Figures 3}7.

Figure 3 shows central de#ection as a function of time for a (0/90)
s
square plate (b/h"10)

under oscillating #ow. It can be found that very complex vibration patterns occur. Due to



Figure 1. Comparisons of transient response of a (0/90/0) square plate under sinusoidal distributed load:**,
present; - - - - -, Khdeir & Reddy [18].

Figure 2. Comparisons of transient response of a ($45)
T

square plate subjected to a suddenly applied uniformly
distributed load: **, present; - - - - , Kant et al. [17].
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#uid damping, the vibration "rstly dissipates and then the response amplitude only varies
slightly at longer times.

Figure 4 shows the e!ect of width-to-thickness ratio on the dynamic response of a
($45

2
)
T

square plate subjected to oscillating #ow and the results are compared with their
classical countparts (CPT). It can be found that the transverse de#ection predicted by
HSDPT is larger than that predicted by the CPT. It can also be seen that the transverse
de#ection of the plate with b/h"10 is much greater than that of the plate with b/h"5.

Figure 5 shows the e!ect of the total number of plies N on the dynamic response of
antisymmetric angle-ply laminated square plates (b/h"10) exposed to oscillating #ow. It
can be seen that the transverse de#ection decreases as the total number of plies N increases,
but the e!ect is very small.



Figure 3. Central de#ection versus time for a (0/90)
s
square plate exposed to oscillating #ow.

Figure 4. E!ect of transverse shear deformation on the dynamic response of a ($45
2
)
T

plate under oscillating
#ow: 1, HSDPT b/h"10; 2, CPT b/h"10; 3, HSDPT b/h"5; 4, CPT b/h"5.
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Figure 6 compares the variations of the central de#ection as functions of time for ($45
2
)
T

and ($30
2
)
T

antisymmetric angle-ply laminated square plates (b/h"10). The results show
that the transverse central de#ection of the ($45

2
)
T

plate is slightly lower than that of the
($30

2
)
T

plate.
Figure 7 shows the e!ect of plate aspect ratio on the dynamic response of ($45

2
)
T

plates
with either a"b"0)5 m or a"0)75 m, b"0)5 m. It can be seen that the transverse
de#ection of the rectangular plate is much higher than that of the square plate.

Figures 8 and 9 show the phase plane diagrams of forced vibration induced by
oscillating #ow for (0/90)

s
and ($45

2
)
T

plates with a/h"b/h"10. It can be found that
irregular motion now occurs and the phase plane trajectories for these vibrations appear
chaotic.



Figure 5. E!ect of the total number of plies N on the dynamic response of antisymmetric angle-ply laminated
plates under oscillating #ow: 1, ($45

2
)
T
; 2, ($45

5
)
T
.

Figure 6. E!ect of "ber orientation on the dynamic response of antisymmetric angle-ply laminated plates under
oscillating #ow: 1, ($45

2
)
T
; 2, ($30

2
)
T
.

Figure 7. E!ect of aspect ratio on the dynamic response of ($45
2
)
T

plates under oscillating #ow: 1, a/b"1; 2,
a/b"1)5.
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Figure 8. Phase plane trajectories for (0/90)
s
plate (a/h"b/h"10) under oscillating #ow.

Figure 9. Phase plane trajectories for ($45
2
)
T

plate (a/h"b/h"10) under oscillating #ow.
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5. CONCLUDING REMARKS

Dynamic and chaotic behaviors of a simply supported, shear-deformable laminated plate
exposed to an oscillating #ow have been studied by using an analytical}numerical
procedure. A number of issues related to the free vibration and transient response of
antisymmetric angle-ply and symmetric cross-ply laminated plates have been examined.

A parametric study of shear-deformable laminated plates in an oscillating #ow has been
carried out and pertinent conclusions about the in#uence played in this respect by a number
of geometrical and physical parameters have been outlined. The results show that very
complex vibration patterns can occur and essentially chaotic motion can develop. They also
con"rm that the characteristics of dynamic behavior are signi"cantly in#uenced by
transverse shear deformation, plate aspect ratio and "ber orientation. In contrast, the total
number of plies has less e!ect.
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APPENDIX A

In equations (1)}(4)
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where h"lamination angle with respect to the plate x-axis. Also
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where o(k) is the mass density of the kth layer.

APPENDIX B

In equation (10)
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APPENDIX C

In equation (12), for two cases of (;Q !wR )*0 and (;Q !wR )(0
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where sgn is the signal function of (;Q !wR ), and
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APPENDIX D

In equation (13)
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